Стабилизатор тока и стабилизатор напряжения.


Стабилизатор тока и стабилизатор напряжения.

      Редакция 30.03.2023г.

     Эта статья является продолжением статьи «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения».
     Как одно превратить в другое.

     ***

     Временами я просматриваю статистику посещаемости моего сайта в Яндекс Метрике. Там же можно увидеть по каким запросам читатели приходят на ту или иную статью. Так вот на статью о генераторах тока зачастую читатели попадают, набирая запросы такого характера:
     — Как из стабилизатора напряжения сделать генератор тока?
     — Как источник тока переделать в стабилизатор напряжения?
     Ну и тому подобное.

     Раньше у меня такие вопросы вызывали только улыбку. Но сейчас я решил, что нужно вполне серьёзно на них ответить. Рассказать, чем же отличается схемотехника стабилизаторов тока и стабилизаторов напряжения. Вместо слова стабилизатор можете подставить генератор или источник.

     Итак, для начала нам нужно твёрдо себе уяснить основное различие источников тока и напряжения:
     Идеальный источник тока создаёт в нагрузке ток стабильной, неизменной величины.
     Идеальный источник напряжения создаёт на нагрузке напряжение стабильной неизменной величины.

     Далее я буду употреблять в тексте слова стабилизатор, генератор, источник. Все они будут являться синонимами словосочетания «Идеальный источник». Не пугайтесь слова «идеальный». Практически любой бытовой источник напряжения является условно идеальным, до того момента пока вы не нарушите условий его эксплуатации. Ну не включите, например слишком большую нагрузку, или не закоротите накоротко.
     Исключение составляют зарядные устройства. Но там разговор особый.
     Таким образом если мы изменяем сопротивление нагрузки у источника напряжения, то напряжение на нагрузке остаётся стабильным, а ток, протекающий через нагрузку, изменяется.

     Uн → const,
     Iн → var.

     Если мы изменяем сопротивление нагрузки у источника тока, то ток, протекающий через нагрузку, остаётся неизменным, а напряжение на нагрузке изменяется.

     Uн → var.
     Iн → const,

     Сразу оговорюсь что никакие химические, фотоэлектрические, электромеханические и т.д. и т.п. источники электроэнергии, не оснащённые специальными схемами стабилизации выходных характеристик, не могут рассматриваться ни как источник напряжения ни как источник тока. Они нечто среднее между тем и другим так как и ток и напряжение на выходе у них изменяются и при изменении сопротивления нагрузки, и с течением времени и по разным другим причинам. Такие источники являются источниками ЭДС.

     Итак, чем же различаются схемы стабилизаторов тока и стабилизаторов напряжения?
     Рассмотрим для начала что такое стабилизатор вообще. Функциональная схема любого стабилизатора выглядит так как показано на Рис. 1.

Рис. 1 Функциональная схема стабилизатора.
Рис. 1 Функциональная схема стабилизатора.

     Здесь:
     — УМ — усилитель мощности. Надо понимать, что несмотря на грозное название усилителем мощности может послужить обычный транзистор. Внутри интегральных микросхем таких усилителей мощности пруд пруди.
     — УО — расшифровывается не как умственно отсталый, а как усилитель ошибки.

     Как это работает.
     Вход подключен к какому-либо источнику питания. На выходе начинает протекать ток, который создаёт некоторое падение напряжения на сопротивлении подключенной нагрузки. УО включен в цепь глубокой отрицательной обратной связи (ОС).
     Выходной параметр, ток или напряжение подаётся на один из входов УО. Ко второму входу подключен некий эталон. Если величина параметра на выходе УМ не совпадает с величиной эталона, то образуется некоторая разница между первым и вторым входом. Эта разница называется ошибкой.
     УО усиливает эту ошибку во много раз и выдаёт на УМ в виде управляющего сигнала, этот сигнал заставляет УМ изменить свои характеристики так чтобы выходной параметр (ток или напряжение) пришёл в соответствие с эталоном.
     Думаю, должно быть понятно, что для того, чтобы поддерживать минимальную разность между выходным параметром и эталоном УО должен обладать очень большим коэффициентом усиления (Ку).

     Теперь давайте посмотрим, как это всё можно реализовать на практике.
     Начнём с простейшего стабилизатора напряжения, Рис. 2. Кстати, схемы, построенные по такому принципу в основном и были распространены примерно до 1980 года.

     Для начала немного о терминологии.
     — Эталон теперь будет называться опорным напряжением (Uоп). Независимо от того стабилизатор чего мы строим тока или напряжения, на вход 1 УО будет подаваться напряжение.
     — ИОН — источник опорного напряжения.

 Рис. 2 Схема простого стабилизатора напряжения.
Рис. 2 Схема простого стабилизатора напряжения.

     В этой схеме роль УМ выполняет биполярный транзистор структуры n-p-n. В качестве ИОН задействован стабилитрон VD1. Остаётся вопрос — а где же УО? Роль УО выполняет p-n переход база-эмиттер транзистора. Вход 1 это эмиттер, на нём присутствует выходное напряжение. Роль входа 2 выполняет база транзистора, на неё подано опорное напряжение с катода VD1.
     Действительно, переход Б-Э это фактически включенный в прямом направлении полупроводниковый диод. А как известно на p-n переходе диода при прямом включении возникает некоторое довольно стабильное падение напряжение. И это напряжение очень слабо зависит от протекающего через диод тока. Стабильность напряжения Б-Э зависит от крутизны вольтамперной характеристики этого диода. Чем круче характеристика, тем меньше влияние тока протекающего через диод на падение напряжения на нём, что эквивалентно большому Ку усилителя ошибки.
     Напряжение на нагрузке вычисляется по следующей формуле:

     Uн = Uоп — Uбэ

     Так как Uоп и Uбэ стабильны то и Uн также стабильно. Причём, при идеальных Uоп и Uбэ, Uн не будет зависеть ни от изменения питающего напряжения, ни от изменения сопротивления нагрузки. В разумных пределах, конечно.
     Тот, кто читал мою статью «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения», тот думаю сам сможет оценить эти самые пределы.

     Теперь давайте подумаем, как нам этот стабилизатор напряжения переделать в стабилизатор (генератор) тока.
     На самом деле всё очень просто.
     Так как ток, протекающий через нагрузку, течёт от источника питания к коллектору транзистора, а затем в эмиттер, то следовательно ток в нагрузке практически точно соответствует току, протекающему через коллектор.
     Если вместо Rн запаять постоянный резистор тогда величина тока, протекающего через коллектор, будет постоянна и не будет зависеть от изменения напряжения питания, Рис. 3.

 stabilizator-toka-i-stabilizator-napryazheniya_03.jpg
Рис. 3

     Вычисляться этот ток будет по следующей формуле:

     Iк = Uэ / R2 = (Uоп — Uбэ) / R2

     Вот мы, собственно говоря, уже и получили генератор (источник) тока. Правда работать он будет сам на себя, а потому в таком виде никому не нужен.
     Преобразовать его в полноценный генератор тока совсем просто. Нужно оторвать коллектор транзистора от цепи питания и включить в разрыв нагрузку, Рис. 4.

 Рис. 4 Схема простого генератора (стабилизатора) тока.
Рис. 4 Схема простого генератора (стабилизатора) тока.

     В этой схеме ток в нагрузке будет стабильным и не будет зависеть от напряжения питания и сопротивления нагрузки, опять же — в разумных пределах. Как эти пределы рассчитать я рассказывал в предыдущей статье.

     Таким образом стабилизатор напряжения (Рис. 2) я преобразовал в генератор тока (Рис. 4). Но в этих схемах есть один недостаток — очень низкий коэффициент стабилизации. Связано это как малой стабильностью ИОН на стабилитроне VD1, так и с низкой стабильностью Uбэ.

     В предыдущей статье я приводил такой пример схемы генератора тока, Рис. 5.

Рис. 5 Схема генератора тока с операционным усилителем в цепи обратной связи.

     В этой схеме ИОН может быть построен на стабилитронах или на более современных компонентах, например трёхвыводная микросхема TL431 или её аналог.
     Операционный усилитель ОУ выполняет роль усилителя ошибки. Такое построение схемы позволяет получить очень высокую стабильность выходных характеристик. Здесь резистор Rэ выполняет роль датчика тока (ДТ). Падение напряжения на этом датчике тока изменяется пропорционально изменению протекающего через него тока.

     Ну и как вы уже, наверное, поняли её также легко превратить в стабилизатор напряжения, Рис. 6.

Рис. 6 Схема стабилизатора напряжения с операционным усилителем в цепи обратной связи.

     ИОН обычно выдаёт Uоп в районе (2 — 5) Вольт. Делителем R1R2 устанавливают требуемое выходное напряжение. Чем больше коэффициент деления делителя, тем больше выходное напряжение.

     Что можно сказать по поводу этих двух схем.
     Генераторы тока по схеме изображённой на Рис. 5 вполне себе строятся так как от генераторов тока обычно не требуется большая мощность. Обычно они питают различные резистивные датчики температуры, давления, освещённости. В этих случаях требуется высокая стабильность генератора тока, а не мощность.
     Стабилизаторы напряжения в наше время в основном представляют из себя импульсные источники питания. Это позволяет получить высокий КПД и хорошие массогабаритные характеристики. Но в некоторых случаях не обойтись и без аналоговых стабилизированных источников питания. Например, там, где предъявляются высокие требования к уровню высокочастотных помех. Все импульсные источники довольно сильно фонят.

      Теперь к вопросу о внутреннем (выходном) сопротивлении источников тока и напряжения.
      Есть такое понятие как — динамическое сопротивление.
      Посмотрим на график зависимости выходного напряжения от выходного тока для стабилизатора напряжения (источника напряжения), Рис. 7.

 stabilizator-toka-i-stabilizator-napryazheniya_07.jpg
Рис. 7

      Выберем какой-либо участок где источник находится в режиме стабилизации напряжения (нормальном режиме работы).
      Ток в нормальном режиме работы изменяется от I1 до I2
dI = I2 — I1,
выходное напряжение (U) при этом никак не изменяется
dU = 0.
      Чтобы вычислить динамическое сопротивление источника (стабилизатора) напряжения нужно dU разделить на dI.
Rdu = dU/dI = 0/dI = 0
      От сюда следует, что внутреннее сопротивление источника (стабилизатора) напряжения на рабочем участке равно (0) нулю.

      Теперь о внутреннем сопротивлении источника (стабилизатора, генератора) тока. Посмотрим на график зависимости выходного тока от напряжения, Рис. 8.

 stabilizator-toka-i-stabilizator-napryazheniya_08.jpg
Рис. 8

      Наверное, вы уже всё сами поняли.
      Здесь если разделить dU на dI получим динамическое сопротивление равное бесконечности ().
Rdi = dU/dI = dU/0 =
      То есть у источника (стабилизатора, генератора) тока внутреннее (выходное) сопротивление на рабочем участке равно бесконечности.

      Как вы, наверное, понимаете здесь речь шла об идеальных источниках тока/напряжения. У реальных источников внутреннее сопротивления естественно отличается от идеального, но чем ближе выходное сопротивление к идеалу, тем источник лучше.

     Применение.
     Стабилизаторы напряжения окружают нас со всех сторон. Ни один компьютер или телевизор не может обойтись без них. Даже мобильник нужно время от времени заряжать через зарядное устройство, которое представляет собой ничто иное как стабилизированный источник напряжения.
     Генераторы тока для нас не так заметны. Но могу вас уверить что вы их постоянно неосознанно используете.
     Практически каждая интегральная микросхема содержит внутри себя генератор тока (источник стабильного тока). В больших интегральных микросхемах их сотни если не тысячи.
     Но также находят применение и мощные генераторы тока, вот два примера.

     Специализированные зарядные устройства для мощных аккумуляторов.
     Как известно заряд аккумулятора нужно проводить стабильным током. Для этого используют мощный источник питания, в который встроены две цепи обратной связи, одна по напряжению, она не даёт выходному напряжению превысить некоторый установленный уровень. Другая по току ограничивающая выходной ток устройства, а следовательно, и ток заряда.
     Таким образом когда вы подключаете разряженный аккумулятор к зарядному устройству возникает режим перегрузки. Обратная связь по току реагирует на это и ограничивает ток на выходе. Напряжение на выходных клеммах при этом падет. В дальнейшем по мере заряда аккумулятора напряжение растёт, ток при этом остаётся неизменным.
     Это означает что зарядное устройство работает в режиме генератора тока.

     Вторым примером может служить полупроводниковый сварочный аппарат. Здесь та же ситуация, а вернее даже ещё хуже, так как в начале процесса сварки на выходе аппарата вообще создаётся короткое замыкание. Но обратная связь по току не даёт току вырасти до опасной величины и сбрасывает уровень выходного напряжения. Дальше уже в процессе сварки эта же обратная связь следит за постоянством тока в электрической дуге, выходное напряжение при этом будет колебаться. Таким образом сварочный аппарат работает в режиме генератора тока.


     То есть и сварочный аппарат, и зарядное устройство если правильно организовать обратные связи и ввести соответствующие переключатели, можно использовать по прямому назначению, то есть в режиме генератора (стабилизатора) тока, а также как стабилизированные источники напряжения.
     Всё зависит от того откуда снимается сигнал для ОС. Если непосредственно с выхода, то получаем стабилизатор напряжения. Если с датчика тока, то получим генератор тока.
     Правда если говорить о современных источниках питания, то они представляют собой стабилизированные источники напряжения со схемой ограничения по току.
     То есть в них присутствуют обе обратные связи: и по напряжению, и по току. Но обратная связь по току включается в работу только в случае перегрузки. Именно поэтому большинство современных источников питания способны выдерживать даже длительные короткие замыкания на выходе.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *